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We show the result on existence of at least one (strictly) positive solution for a boundary value
problem for a system of two second-order differential equations

x′′ + f(t, x, y, x′, y′) = 0, t ∈ [0, 1],

y′′ + g(t, x, y, x′, y′) = 0, t ∈ [0, 1],

x(0) = α0[x], x(1) = α1[x], y(0) = β0[y] + γ0, y(1) = β1[y] + γ1,

where γ0, γ1 ≥ 0, f : [0, 1]× [0,+∞)2 × R2 7→ [0,+∞) and g : [0, 1]× [0,+∞)2 × R2 7→ (−∞, 0] are
continuous, and αi, βi are linear functionals involving Riemann–Stieltjes integrals.
Since f ≥ 0 and g ≤ 0, first component of the solution (x, y) is concave and second component is

convex. Gronwall-type inequality [1] is used to obtain a priori bounds for norm of a derivative and
hybrid Krasnosel’skii-Schauder fixed point theorem [2] is used to prove the existence of a positive
solution.
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We consider the equation

x′′ + g(x) = 0, (1)

where g(x) is an odd degree polynomial with simple zeros [1; 2].
We add a function f(t) = h · cosωt on the right, so the equation becomes

x′′ + g(x) = f(t). (2)

We study behavior of solutions in equation (2) which, without the external force, have period
annuli.
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A three-dimensional multiparametric system of ordinary differential equations in a gene regulatory
network is considered. The proposed model has eighteen parameters. Examples of genetic systems
which have saddle-focus critical point type with chaotic behavior of solutions were constructed.
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We consider the system of ordinary differential equations of the form

dx1

dt
= tanh(a11x1 + a12x2 + ...+ a1nxn − θ1)− b1x1,

dx2

dt
= tanh(a21x1 + a22x2 + ...+ a2nxn − θ2)− b2x2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dxn

dt
= tanh(an1x1 + an2x2 + ...+ annxn − θn)− bnxn,

which supposedly model artificial neuronal networks. The above system describes the evolution of
these networks in time. We provide examples of systems with stable critical points, stable periodic
trajectories (limit cycles), and attractors exhibiting chaotic behavior. We also make comparisons
with systems, modeling genetic networks.
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Properties of solutions to the Duffing equation are considered. These properties relate to the
notion of the index of a solution. We show that indexes of solutions change in a non-monotone way.
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We define the modified Gao-Ma system
x′ = z + (y − a)x,
y′ = 1− by − x6,
z′ = −x− cz,

(1)

where the variable x signifies the interest rate, y corresponds to the degree of investment demand,
and z denotes the exponential factor of prices [1]. Additionally, the constant a ≥ 0 signifies the
household savings rate, while b ≥ 0 represents the investment cost and c ≥ 0 is the elasticity of
demand of commercial markets [2].
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Consider the Fuč́ık equation with one Bitsadze-Samarskii type nonlocal boundary condition

−x′′ =µx+ − λx−, (1)

x′(0) =0, x(1) = γx(ξ), (2)

with the parameters µ, λ, γ ∈ R and ξ ∈ (0, 1).
The spectrum of the problems (1), (2) for some ξ values is investigated.

REFERENCES
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We study a priori estimate and the existence of solutions with symmetric derivatives for the
third-order two-point boundary value problem

x′′′ = f(t, x, x′, x′′), t ∈ (0, 1),

x(0) = 0, x(1) = 0, x′(t) = x′(1− t).

The main tool in the proof of our result is Leray-Schauder Continuation Principle. To illustrate the
applicability of the obtained results, we consider an example.
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