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We present a result on the existence of a positive solution for a system of two fourth-order
nonlinear differential equations

x(4)(t) + f1
(
t, x(t), y(t)

)
= 0, t ∈ (0, 1),

y(4)(t) + f2
(
t, x(t), y(t)

)
= 0, t ∈ (0, 1),

(1)

coupled with nonlocal nonlinear boundary conditions

x′(0) = x′′(0) = x′′′(0) = 0, x(1) + x′(1) = k1 x
′(α)x′′′(β),

y(0) = y′′(0) = y′′′(0) = 0, y(1) = −k2 y(γ) y
′′(δ).

(2)

We call (x, y) ∈ C4
(
[0, 1]

)
× C4

(
[0, 1]

)
a positive solution of the problem (1),(2) if (x, y) satisfies

differential equation (1), boundary conditions (2) and x(t) > 0, y(t) > 0 for every t ∈ (0, 1).
Standard method of obtaining positive solutions is to rewrite a system of boundary value problems

as an equivalent system of integral equations and seek solutions as fixed points of the corresponding
integral operator in suitable cone [1]. The proof of the existence of fixed points relies on the vector
version of Krasnosel’skĭı’s fixed point theorem [2; 3].
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The authors in [1] summarize the progress on the molecular and genes mechanisms of seasonal
regulation and seasonal changes. Authors describe how important are rhythmic cycles and that
small changes in seasonality cycle can involve changes in genes.
In the articles [2], [3], [4] the authors study system which is part of the gene regulatory system.
The authors in [5] observed the seasonality function

r0 = r(1 + ϵ sin θt). (1)

In the current research we extend the two dimensional gene regulatory system
dx1

dt
=

1

1 + e−µ1(w11x1+w12x2−θ1)
− v1x1,

dx2

dt
=

1

1 + e−µ2(w21x1+w22x2−θ2)
− v2x2

(2)

by change the parameters wij with the simplified seasonality function

S(wij , ξij , t) = FS = wij + sin ξijt. (3)

With the seasonality functions is possible to drive the system solutions from one attractor to
another one. Reasons of driving solutions from one attractor to another is controllability. In the
papers [6], [7] controllability use are observed. In gene regulatory system the seasonality functions
in some fixed moment t can change types of solutions attractions for the gene regulatory system (2).
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We consider a novel six-dimensional (6D) dynamic system derived from a modified second-type
3D Lorenz system 

dx1

dt
= a(−x1 + x2) + x4,

dx2

dt
= −x3sgn(x1),

dx3

dt
= −1 + |x1|,

dx4

dt
= −bx1,

dx5

dt
= −x5 + x1x4,

dx6

dt
= −x6 + x1x3.

(1)

The newly 6D hyperchaotic system exhibits diverse dynamic behaviors. A comprehensive dyna-
mical analysis was performed, including bifurcation diagrams, Lyapunov exponent and dimension
calculations.
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We observe the modified Duffing equation{
x′ =y,

y′ =− x3 + x+ Fcos(ωt),
(1)

where F is the amplitude of the periodic driving force and ω is the angular frequency of the periodic
driving force. Examples with chaotic behavior of the modified Duffing equation were constructed.
The chaotic behavior was confirmed by analysis using Lyapunov exponents.
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We consider the four-dimensional system of ordinary differential equations that model the 4-
element neural network. The 4D attractor is constructed as a product of two 2D attractors, limited
cycles with equal periods.
The general system, which is used to model ANN of 4 elements, is

dx1

dt
= tanh (w11x1 + . . .+ w14x4)− b1x1,

dx2

dt
= tanh (w21x1 + . . .+ w24x4)− b2x2,

dx3

dt
= tanh (w31x1 + . . .+ w34x4)− b3x3,

dx4

dt
= tanh (w41x1 + . . .+ w44x4)− b4x4.

(1)

The hyperbolic tangent function tanh(z) is sigmoidal, but its range value is (−1, 1).
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1Institute of Mathematics and Computer Science, University of Latvia

Raina blvd. 29, Riga LV-1459, Latvia
2Daugavpils Study Science Center, Riga Technical University
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We consider Duffing equation, which is rich of solutions behavior and allows for chaos also. Let
us analyze the behavior of solutions if the cubic nonlinearity in the Duffing equation is replaced
by a polynomial of a higher degree. Through numerical experiments, suitable parameter values are
found to demonstrate chaotic behavior in the modified equation.
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We know that the matrix W can be variable. We have discovered previously several attractors
for the system 

x′
1 =

1

1 + e−µ1(w11x1+w12x2+w13x3−θ1)
− v1x1,

x′
2 =

1

1 + e−µ2(w21x1+w22x2+w23x3−θ2)
− v2x2,

x′
3 =

1

1 + e−µ3(w31x1+w32x2+w33x3−θ3)
− v3x3,

(1)

where the coefficients of W (t) were expressed using sin[t], sin[t]2 functions.
We wish now to repeat this using lemniscate functions sl[t], sl[t]2. The function sin[t] is a solution

of the equation x′′ + x = 0. The function sl[t] is a solution of the problem x′′ + 2x3 = 0, x(0) = 0,

x′(0) = 1, it can be expressed as sl[t] = sn

(√
2t;

1

2

)
.
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PROBLEMS WITH NONLOCAL TWO-POINT
BOUNDARY CONDITIONS

NATALIJA SERGEJEVA1, SIGITA URBONIENĖ2
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Let us consider the Fuč́ık problem

x′′ = −µx+ + λx−, (1)

with nonlocal two-point boundary conditions of four types

x(0) = 0, x(1) = γx(ξ), (2)

x′(0) = 0, x(1) = γx(ξ), (3)

x(0) = 0, x(1) = γx′(ξ), (4)

x′(0) = 0, x(1) = γx′(ξ), (5)

where ξ = m
n ∈ (0, 1) and γ ∈ R, m and n (0 < m < n) are positive coprime integer numbers.

The idea for this study and the type of boundary conditions was taken from the work [1], where
the linear Sturm-Liouville equation x′′ = −λx was analyzed with boundary conditions (2) - (5).
The aim of the study is to identify the main similarities and differences of the spectra, where

ξ = 1
2 .

The obtained results generalize and continue of author’s previous established investigations [2],
[3], [4].
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[1] S. Pečiulytė, A. Štikonas. On positive eigenfunctions of Sturm–Liouville problem with nonlocal two-point boundary
condition. Math. Model. Anal., 12 (2):214–226, 2007.

[2] N. Sergejeva. The regions of solvability for some three point problem. Math. Model. Anal., 18 (2):191-203, 2013.
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We study boundary value problem consisting of the nonlinear third-order differential equation

x′′′ + f(t, x) = 0, t ∈ [a, b], (1)

and the integral type boundary conditions

x(a) = 0, x(b) = 0,

b∫
a

x(ξ)dξ = 0. (2)

The existence of a unique solution for problem (1),(2) is proved in several ways. The main tools in
the proofs are the Banach fixed point theorem [3] and the Rus’s fixed point theorem [1]. To compare
the applicability of the obtained results, some examples are considered.
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