Indico style
Indico style - inline minutes
Indico style - numbered
Indico style - numbered + minutes
Indico Weeks View
Back to Conference View
Choose Timezone
Use the event/category timezone
Specify a timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aires
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba
America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Ciudad_Juarez
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros
America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Paramaribo
America/Phoenix
America/Port-au-Prince
America/Port_of_Spain
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok
Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi
Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Canada/Atlantic
Canada/Central
Canada/Eastern
Canada/Mountain
Canada/Newfoundland
Canada/Pacific
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kirov
Europe/Kyiv
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague
Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zurich
GMT
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kanton
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis
US/Alaska
US/Arizona
US/Central
US/Eastern
US/Hawaii
US/Mountain
US/Pacific
UTC
Save
Europe/Riga
English (United Kingdom)
Deutsch (Deutschland)
English (United Kingdom)
English (United States)
Español (España)
Français (France)
Polski (Polska)
Português (Brasil)
Türkçe (Türkiye)
Монгол (Монгол)
Українська (Україна)
中文 (中国)
Login
Fundamental and applied magnetohydrodynamics
Friday, 31 March 2023 -
12:00
Monday, 27 March 2023
Tuesday, 28 March 2023
Wednesday, 29 March 2023
Thursday, 30 March 2023
Friday, 31 March 2023
12:00
Paņēmiens šķidra metāla brīvās virsmas elektromagnētiskai stabilizācijai
-
Arturs Brekis
(
Institute of Physics of the University of Latvia
)
Paņēmiens šķidra metāla brīvās virsmas elektromagnētiskai stabilizācijai
Arturs Brekis
(
Institute of Physics of the University of Latvia
)
12:00 - 12:40
Room: 532. telpa
Piedāvāta jauna metode šķidra metāla brīvās virsmas stabilizācijai elektromagnētiskā ceļā. Paņēmiens var tikt pielietots maiņstrāvas un maiņvirziena šķidruma plūsmas MHD ģeneratoru darbības uzlabošanai ar pielietojumiem tālās kosmosa misijās un citviet. Izveidots demonstrācijas stends, kas sastāv no diviem pretēji novietotiem un pretfāzēs saslēgtiem skaļruņiem, kas imitē termoakustiskā dzinēja darbību, analoģiski LU Fizikas Institūtā veiktā FP-7 Eiropas projekta "SpaceTrips" iekārtai. Starp skaļruņiem ir iestrādāta caurspīdīga U-veida caurule, kas ir piepildīta ar InGaSn eitektisko sakausējumu, ievietotu pastāvīgo magnētu radītajā magnētiskajā laukā. Demonstrēts, ka, izmantojot piedāvāto metodi, iespējams iegūt vizuāli novērojamu stabilizējošu efektu pat ar relatīvi vāju magnetohidrodinamisko mijiedarbību.
12:40
Continuous Directional Solidification of Aluminium Alloys Under Combined Electromagnetic Interaction
-
Raimonds Nikoluškins
(
Institute of Physics of University of Latvia
)
Continuous Directional Solidification of Aluminium Alloys Under Combined Electromagnetic Interaction
Raimonds Nikoluškins
(
Institute of Physics of University of Latvia
)
12:40 - 13:00
Room: 532. telpa
Direct chill directional solidification is a method how to cast metal alloys with great control of solidification parameters like solidification velocity and temperature gradient at the solidification interface. This paper describes results and methods of our experiments with electromagnetic interaction (EM) in direct chill casting of silicon rich aluminium alloys like A356 and A360. Studies about EM influence on metal solidification shows that various combinations of magnetic fields have significant influence on grain structure in directionally solidified ingot. We directionally solidified aluminium rods with diameter of 10 to 20 mm under various EM interactions. In this study there are applied static electromagnetic field of 0.4T and current flow through solidification interface. Static field is created by an array of permanent magnets in ring formation where highest field value is in the center and pointed axially. The direct current is introduced with immersed electrode into molten aluminium through solidification interface to seed rod. Interaction between current and magnetic field creates tiny molten metal flows directly in mushy zone which than influences heat transfer and affects grain structure and properties of alloy. By studying microstructure we observed that EM interference can influence grain size and shape, and properties of alloy, like strength, ductility, isotropy. Columnar structure of dendrites disappears when magnetic field and current are introduced. We combined static magnetic field with induced short but strong current pulses in mushy zone with 100 to 500A. This creates pressure waves which also enhances the small scale flows in mushy zone
13:00
Force density in 2D centrifugal system using travelling magnetic field
-
Lorenzo Terlizzi
(
University of Latvia
)
Force density in 2D centrifugal system using travelling magnetic field
Lorenzo Terlizzi
(
University of Latvia
)
13:00 - 13:20
Room: 532. telpa
Purification of liquid metal from small, unwanted solid particles that are the by-product of industrial processes is a common problem in metallurgy. In practice purification is achieved using various filtration methods such as sedimentation, mechanical filters, etc. Another used method is centrifugation that uses the rotation of the fluid and inertial forces to separate particles with a density different from that of the fluid itself. Rotation of the liquid metal can be achieved by using a travelling magnetic field, thus inducing separation of the particles. Such a magnetic field can be created by externally rotating magnets, meaning that the system is completely contactless – no moving parts are in contact with the liquid metal at any time, thus also improving overall safety, especially for alkali metals. The aim of the presented work is to describe and analyse the developed EM force density in a 2D, simplified centrifugal version of such a system using an analytical and numerical approach. The analysis of forces in the system is the first step in calculating the velocity distribution of a centrifugal filter which would, in theory, be able to perform a separation of solid particles from liquid metal.
13:20
Heat density in a 2D centrifugal system using travelling magnetic field
-
Rūdolfs Strazdiņš
(
University of Latvia
)
Heat density in a 2D centrifugal system using travelling magnetic field
Rūdolfs Strazdiņš
(
University of Latvia
)
13:20 - 13:40
Room: 532. telpa
In metallurgy, during the manufacturing process, liquid metals often have impurities such as solid oxide particles. Often, they can be removed from molten metals using mechanical filters (sieves). In praxis, due to the filter clogging and greater metal loss higher efficiency of this process is desired. Another approach is to use centrifugal (inertial) force and the fact that liquid metals are good electrical conductors – by applying traveling magnetic field which causes the molten metal to move. This, together with the fact that the metal and impurities have different densities, can be used to create a centrifugal filter. In real-world applications, the estimation of power required for centrifugal filter to work is of most importance. This work generated the heat power density in the liquid metal due to the induced currents is explored both analytically and numerically. The goal of this presentation is to show the analytical approach used for power estimation in simplified 2D case and to compare obtained results with numeric model.
13:40
Modeļeksperiments termoelektromagnētisko efektu pētīšanai metināšanas punktā.
-
Valdemars Felcis
(
Institute of Physics of the University of Latvia
)
Modeļeksperiments termoelektromagnētisko efektu pētīšanai metināšanas punktā.
Valdemars Felcis
(
Institute of Physics of the University of Latvia
)
13:40 - 14:00
Room: 532. telpa
Metālu additīvā ražošana ir lētāka un vieglāka metode, ar kuru var straujāk prototipēt, salīdzinot ar parasti pielietoto liešanu. Analizējot ekstrūzijas vai lāzeru additīvo ražošanu ir svarīgi aplūkot metināšanas punktu, jo tas ietekmē objekta kvalitāti. Lai uzlabotu kvalitāti, apsver izmantot termoelektriskus materiālus ar magnētiem, kam ir empīrisku pētījumu rezultāti, bet ne par darbības mehānismu vai optimāliem apstākļiem. Šajā darbā mēs izpētām kušanas punkta dinamiku un svarīgākos aspektus, izmantojot mērogotu eksperimentu ar šķidru gallinstanu, kam ir atbilstošs COMSOL modelis. Izmantojot eksperimentu, verificējam COMSOL modeli, tad mainot modeli un izmantojot bezdimensionālus skaitļus mēs mērogojam rezultātus atbilstoši metālu aditīvās ražošanas apstākļiem. Ar piedāvāto pieeju ir vieglāk izpētīt kušanas punktu, tad tālāk varēs pārbaudīt gūtos uzlabojumus in situ sinhrotrona eksperimentā.