Noteces komponenšu aprēķini, izmantojot slāpekļa koncentrāciju mērījumu rezultātus

3 Feb 2022, 12:00
15m

Speaker

Artūrs Veinbergs (LLU)

Description

Viens no nozīmīgākajiem faktoriem, kas nodrošina augu barības vielu transportu no lauka uz tuvējiem ūdens objektiem ir notece. Kamēr augu barības vielu daudzums dažādos dziļumos augsnes profilā ir atšķirīgs (Canter 1997; Povilaitis et al. 2018), noteces komponenšu sadalījums nozīmīgi ietekmē augu barības vielu izskalošanos (Deelstra et al. 2014). Turklāt noteces komponentēm ir atšķirīgs plūsmas ātrums (Brodie and Hostetler 2005; Deelstra et al. 2014; Jiang et al. 2014). Tikmēr augu barības vielu aiztures procesu ietekmē ūdens šķīduma pavadītais laiks aplūkojamajā sistēmā (Torrentó et al. 2010). Attiecīgi noteces komponentei ar tai raksturīgo plūsmas ātrumu, visticamāk, ir nozīmīga ietekme uz augu barības vielu izskalošanos (Jiang et al. 2014; Carstensen et al. 2020).
Noteces komponenšu procentuālais sadalījums un augu barības vielu koncentrācija katrā noteces komponentē nosaka kopējo ūdens un augu barības vielu apjomu, kāds ieskalojas ūdenstecēs. Uz šiem principiem ir balstīti ūdens un augu barības vielu bilanču aprēķini tādos Eiropā un pasaulē plaši pielietotos hidroloģiskos sateces baseinu modeļos, kā SWAT (Soil and Water Assesment Tool) (Neitsch et al. 2002) un HYPE (Hydrological Predictions for the Environment) (Lindström et al. 2010). Kopš pagājušā gadsimta sākuma ir izstrādātas virkne dažādu metožu bāzes noteces atdalīšanai, kas balstītas uz noteces hidrogrāfu analīzi (Chow et al. 1988; Brodie and Hostetler 2005). No vienas puses izdalītās noteces komponentes var palīdzēt izskaidrot augu barības vielu saturu notecē. No otras puses augu barības vielu koncentrāciju mērījumu rezultāti dažādos izpētes līmeņos var palīdzēt kvantificēt noteces komponentes un izskaidrot raksturīgos hidroloģiskos procesus interesējošajā sateces baseinā.
Šī pētījuma mērķis ir kvantificēt hidroloģiskās noteces komponentes. Rezultātus turpmāk paredzēts izmantot matemātisku modeļu kalibrācijā, kā arī mērķtiecīgi plānojot efektīvus ūdens kvalitāti uzlabojošus pasākumus.
Šajā pētījumā noteces komponenšu procentuālais sastāvs notecē no mazā sateces baseina ir aprēķināts balstoties uz slāpekļa koncentrāciju novērojumiem gruntsūdeņos, kā arī notecē no drenāžas sistēmām. Aprēķinu vajadzībām izstrādāts algoritms, ņemot vērā slāpekļa koncentrācijas trīs iepriekš minētajos izpētes līmeņos. Aprēķini liecina, ka Latvijas teritorijā esošo Bērzes un Mellupītes monitoringa staciju mazajos sateces baseinos ilggadīgi vidēji drenu notece periodā no 2005. līdz 2020. gadam sastādījusi attiecīgi 72% un 41%, bet gruntsūdens pieplūde 28% un 59% no kopējās noteces. Salīdzinoši liels gruntsūdens pieplūdes īpatsvars Mellupītē ir izskaidrojams ar nelielo izbūvēto drenāžas sistēmu blīvumu teritorijā. Salīdzinājumā ar kopējo mazā sateces baseina platību, drenētās teritorijas aizņem 55% Mellupītē un 98% Bērzē.

Izmantotā literatūra
Brodie R, Hostetler S. 2005 A Review of Techniques for Analysing Baseflow from Stream Hydrographs https://pdfs.semanticscholar.org/53e7/0d6591eb10f468d9c27929fb9945f3f29f00.pdf?_ga=2.160681213.13894824.1550669645-732719496.1550669645
Canter LW. 1997 Nitrates in Groundwater. LEWIS PUBLISHERS, 2000 CORPORATE BLVD., N.W., BOCA RATON, FL 33431 (USA): New York.
Carstensen MV, Hashemi F, Hoffmann CC, Zak D, Audet J, Kronvang B. 2020 Efficiency of mitigation measures targeting nutrient losses from agricultural drainage systems: A review. Ambio., 1–18 DOI: 10.1007/s13280-020-01345-5
Chow V Te, Maidment DR, Mays LW. 1988 Applied Hydrology (BJ Clark and J Morriss, eds). McGraw-Hill, Inc.: Singapore.
Deelstra J, Iital A, Povilaitis A, Kyllmar K, Greipsland I, Blicher-Mathiesen G, Jansons V, Koskiaho J. 2014 Hydrological Pathways and Nitrogen Runoff in Agricultural Dominated Catchments in Nordic and Baltic Countries. ‘Agriculture, Ecosystems and Environment’. 195, 211–219 DOI: 10.1016/J.AGEE.2014.06.007
Jiang S, Jomaa S, Rode M. 2014 Modelling Inorganic Nitrogen Leaching in Nested Mesoscale Catchments in Central Germany. Ecohydrology. 7 (5), 1345–1362 DOI: 10.1002/eco.1462
Lindström G, Pers C, Rosberg J, Strömqvist J, Arheimer B. 2010 Development and Testing of the HYPE (Hydrological Predictions for the Environment) Water Quality Model for Different Spatial Scales. Hydrology Research. 41 (3–4), 295–319 DOI: 10.2166/nh.2010.007
Neitsch SL, Arnold JG, Kiniry JR, Srinivasan R, Williams JR. 2002 Soil and Water Assesment Tool. Temple. http://swat.tamu.edu/media/1294/swatuserman.pdf (accessed 28 March 2017)
Povilaitis A, Rudzianskaite A, Miseviciene S, Gasiunas V, Miseckaite O, Živatkauskiene I. 2018 Efficiency of Drainage Practices for Improving Water Quality in Lithuania. American Society of Agricultural and Biological Engineers (ASABE). 61 (1), 179–196 DOI: 10.13031/trans.12271
Torrentó C, Cama J, Urmeneta J, Otero N, Soler A. 2010 Denitrification of groundwater with pyrite and Thiobacillus denitrificans. Chemical Geology. 278, 80–91 DOI: 10.1016/j.chemgeo.2010.09.003

Primary authors

Artūrs Veinbergs (LLU) Mr Ainis Lagzdiņš (Latvijas Lauksaimniecības universitāte) Mr Kaspars Abramenko (Latvijas Lauksaimniecības universitāte)

Presentation materials

There are no materials yet.